Generative Adversarial Networks (GANs) Past, Present, and Future

Zhifei Zhang

Outline

- 1. Basic idea of GANs
- 2. Time line of development
- 3. Drawbacks & solutions
- 4. Future directions

In probability and statistics, a generative model is a model for randomly generating observable data values, typically given some hidden parameters.

Maximum Likelihood

$$\boldsymbol{\theta}^* = \arg\max_{\boldsymbol{\theta}} \mathbb{E}_{x \sim p_{\text{data}}} \log p_{\text{model}}(\boldsymbol{x} \mid \boldsymbol{\theta})$$

- Two neural networks against each other:
 - A generator network G
 - Mimic training samples to fool the discriminator
 - A discriminator network D
 - Discriminate training samples and generated samples

For D:
$$\max_{D} \mathbb{E}_{x \sim q(x)}[\log(D(x))] + \mathbb{E}_{z \sim p(z)}[\log(1 - D(G(z)))]$$

For G:
$$\min_{G} \mathbb{E}_{z \sim p(z)} [\log(1 - D(G(z)))]$$

The objective function of GANs:

$$\min_{G} \max_{D} \mathbb{E}_{x \sim q(x)}[\log(D(x))] + \mathbb{E}_{z \sim p(z)}[\log(1 - D(G(z)))]$$

DCGAN [A. Radford and L. Metz, ICLR 2016] 128 256 512 64 1024 Stride 2 16 32 Stride 2 Stride 2 16 Stride 2 Project and reshape CONV 1 CONV 2 CONV 3 CONV 4

Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.

G(z)

VAE+GAN [A. B. L. Larsen et al., ICML 2016]

- GAN encourages higher resolution compared to VAE
- Controllable generation and manipulation on z

VAE+GAN [A. B. L. Larsen et al., ICML 2016]

VAE+GAN [A. B. L. Larsen et al., ICML 2016]

Super-Resolution [X. Yu and F. Porikli, ECCV 2016]

8× scaling factor

Super-Resolution [X. Yu and F. Porikli, ECCV 2016]

Domain Transformation1 [S. Reed et al., ICML 2016]

Domain Transformation2 [P. Isola et al., CVPR 2017]

Positive examples Real or fake pair?

 \boldsymbol{G} tries to synthesize fake images that fool \boldsymbol{D}

D tries to identify the fakes

Domain Transformation2 [P. Isola et al., CVPR 2017]

Summary

- Seldom use original GAN
- Concatenate an encoder to G
- Concatenate extra feature to z

Drawbacks

- Hard to train, e.g., mode missing.
- Generate something but not real actually.
- Hard to learn to generate discrete data, e.g., text.

Step 0

Step 5k

Drawbacks (mode missing)

$$\min_{G} \max_{D} \mathbb{E}_{x \sim q(x)} [\log(D(x))] + \mathbb{E}_{z \sim p(z)} [\log(1 - D(G(z)))]$$

$$\min_{G} \max_{D} \int_{x} q(x) \log(D(x)) dx + \int_{z} p(z) \log(1 - D(G(z))) dz$$

Drawbacks (mode missing)

Fix G,
$$\min_{G} \max_{D} \int_{x} q(x) \log(D(x)) dx + \int_{z} p(z) \log(1 - D(G(z))) dz$$

 $= \max_{D} \int_{x} q(x) \log(D(x)) + p_{g}(x) \log(1 - D(x)) dx$ $D^{*}(x) = \frac{q(x)}{q(x) + p_{g}(x)}$

Fix
$$D^*$$
, $= \min_{G} \int_{x} q(x) \log \left(\frac{q(x)}{q(x) + p_g(x)} \right) + p_g(x) \log \left(1 - \frac{q(x)}{q(x) + p_g(x)} \right) dx$
 $= \min_{G} \int_{x} q(x) \log \left(\frac{q(x)}{q(x) + p_g(x)} \right) + p_g(x) \log \left(\frac{p_g(x)}{q(x) + p_g(x)} \right) dx$
 $= \min_{G} D_{KL}(q||q + p_g) + D_{KL}(p_g||q + p_g)$
 $= \min_{G} D_{KL}(q||\frac{q + p_g}{2}) + D_{KL}(p_g||\frac{q + p_g}{2}) - 2 \log 2$
 $= \min_{G} 2D_{JS}(q||p_g) - 2 \log 2$
 $q(x) > p_g(x)$: Unrealistic sample $q(x) > p_g(x)$: Mode missing

Drawbacks (mode missing)

However, we cannot ensure D^* in practice.

$$\min_{G} \quad \mathbb{E}_{z \sim p(z)}[\log(1 - D(G(z)))]$$

$$= \min_{G} \quad D_{KL}(p_g||\frac{q + p_g}{2}) - \log 2$$

- Punish more on generating unrealistic samples
- Punish less on mode missing

If relax the assumption of D^* ,

$$\min_{G} \mathbb{E}_{z \sim p(z)}[\log(1 - D(G(z)))]$$

only punish on generating unrealistic samples.

Drawbacks (unrealistic generation)

In GANs, the generated distribution is matched to the distribution specified by *D*, rather than to the real distribution.

Ideally, $p_g(x) = q(x)$, direct matching.

In practice, $D(x|p_g) = D(x|q)$, indirect matching.

Drawbacks (Solutions)

- Achieve D*:
 - Update D multiple times for each update of G.

Drawbacks (Solutions)

$$|x-x'|=|x-F(x)|$$

Mont Carlo
$$\rightarrow q(x) = p_g(x)$$

Drawbacks (Solutions)

3/22/2017 25

Future Directions

- After explosion of applications, theoretical understanding becomes more attractive.
- Better objective functions to ensure convergence.
- There is not a good way to quantify how good the generated samples are.
- Generating discrete samples.
- One-shot imitation learning.
- Connection to reinforcement learning.

3/22/2017 26

