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Basic idea of GANSs

‘g‘ ;fﬂ 3 In probability and statistics, a generative model is
oy a model for randomly generating observable data

WIKIPEDIA values, typically given some hidden parameters.
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Basic idea of GANSs

 Two neural networks against each other:
* A generator network G
* Mimic training samples to fool the discriminator
* A discriminator network D
* Discriminate training samples and generated samples

Generated

i samples
Training { 5 } P ( G } Noise
samples L

Real/fake?




Basic idea of GANSs

Generated

Training { D } samples ( G } Noise
samples x~q(x) x~p(J|c|z)L z~p(z)
G(z)
D(x): x~q(x)?
Real/fake?
ForD: max E,_;llog(D(x))]+E, i llog(l —D(G(2)))]

D

For G: mGin E;pllog(1 —D(G(2)))]
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Basic idea of GANSs

The objective function of GANs:

m(,jn mDaX IEx~q(x) [log(D (x))] + II5:Z~p(z) [log(1 — D(G(2)))]

— Feedforward
<+=== Backpropagation

Real?
-
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Time line

CoGAN [NIPS]

Laplacian DCGAN [ICLR] RNN+GAN [ICML] Instability
GAN [NIPS] Pyramid AN INIPS IRk [ICLR]
[NIPS] NfoGANINIPST VAE+GAN [ICML]  cGaN [iCLR]
@ ® @ o
. Mode
2014 2015 2016 Super-Resolution [ECCV] [CVPR] 2017 Missing
Latent-Manipulation [ECCV] [CVPR] [ICLR]
Domain transformation [ICML] [CVPR]
Theory:
Born Fermenting Booming of Improvements and Applications: Drawbacks &
Solutions

* Higher resolution
* Flexible manipulation
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Time line
DCGAN [A. Radford and L. Metz, ICLR 2016]
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CONV 2

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided

convolutions (generator).

Use batchnorm in both the generator and the discriminator.
Remove fully connected hidden layers for deeper architectures.
Use ReLU activation in generator for all layers except for the output, which uses Tanh.

Use LeakyReL U activation in the discriminator for all layers.




Time line
VAE+GAN [A. B. L. Larsen et al., ICML 2016]
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encod/ Voder/ generator
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x discriminator

AE

GAN

* GAN encourages higher resolution compared to VAE
* Controllable generation and manipulation on z



Time line
VAE+GAN [A. B. L. Larsen et al., ICML 2016]

Input é’

VAEIGAN
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Time line

VAE+GAN [A. B. L. Larsen et al., ICML 2016]




Time line
Super-Resolution [X. Yu and F. Porikli, ECCV 2016]
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Time line

Super-Resolution [X. Yu and F. Porikli, ECCV 2016]
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Time line
Domain Transformationl [S. Reed et al., ICML 2016]

This flower has small, round violet This flower has small, round violet
petals with a dark purple center

petals with a dark purple center

""L_lm

Generator Network Discriminator Network
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Time line
Domain Transformation2 [P. Isola et al., CVPR 2017]

BEisin | _
Real or fake pair? Real or fake pair? T i
j —
T L M N‘
T W
4
G e — I —
Encoder-decoder U-Net

G tries to synthesize fake
images that fool D

D tries to identify the fakes
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Time line
Domain Transformation2 [P. Isola et al., CVPR 2017]
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Summary
X
<
G :.>
— L -

-

D

Real?

Fake?

* Seldom use original GAN
e Concatenate an encoderto G
e Concatenate extra feature to z
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Drawbacks

 Hard to train, e.g., mode missing.
* Generate something but not real actually.

 Hard to learn to generate discrete data, e.g., text.

Target

. - . .

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k
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Drawbacks (mode missing)

Generated
Training samples :
sanl,pl|es { D } L G } Noise
x~q(x) x~p(x|z) z~p(z)
G(z)
D(x): x~q(x)?
Real/fake?
min max [Ey_qo0 [log(D(x))] + E, p2) [log(1 — D(G(2)))]

G D

mGjn max f q(x)log(D(x)) dx + f p(z)log(1 — D(G(2))) dz



Drawbacks (mode missing)

ixg,  minmax [ qGologDC) dx+ [ p(2)logl ~ DG dz
q(x)

= max jx q(x)log(D(x)) + py(x) log(1 — D(x)) dx D*(x) = q(x) + pgy(x)

q(x) 3 q(x)
10 log (q(x) + g (x)) +pg()log (1 1 + 1, (x)) dx

a() ne )
1) log (q(x) + g (x)) +pg)log (q(x) )

=min Dg,(qllq +pg) + Dk (Pgllq + pg)

o q+
—me kL (ql| 5

=min 2D;5(qllpg) —21og2

Fix D,

= min
G

— —
X YR N

= min
G

p q+p
%) + Dy, (pg| > ) —2log2 q(x)<p,(x): Unrealistic sample
g(x)>p,(x): Mode missing
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Drawbacks (mode missing)

However, we cannot ensure D" in practice.

0.4

0.3

min [E

= mc,in Dgj, (Pg 1

z~p(z) [log(l o D(G(Z)))]
q + Py

) —log 2

Punish more on generating unrealistic samples
Punish less on mode missing

If relax the assumption of D7,

min  E;p[log(1 = D(G(2)))]

only punish on generating unrealistic samples.



Drawbacks (unrealistic generation)

In GANs, the generated distribution is matched to the distribution
specified by D, rather than to the real distribution.

Ideally, p,(x) = g(x),
direct matching.

In practice, D(x|p,) = D(x|q),
indirect matching.
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Drawbacks (Solutions)

* Achieve D™:
 Update D multiple times for each update of G.
 Unrolled GAN [Metz et al., ICLR 2017]

* Introduce direct matching:
 Sample-wide distance.

Real?

Fake?

min |x - x'|
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Drawbacks (Solutions) Ix - x'|=]|x = F(x)]

~ " pair-wise distance
4 /
@ _-

N

o o =

Mont Carlo => q(x) = p(x)



Drawbacks (Solutions)

Unrolled 3 -
sze - 3"! (::)

GAN - - - -

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Target

GAN

GAN+E
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Future Directions

* After explosion of applications, theoretical
understanding becomes more attractive.

* Better objective functions to ensure convergence.

 There is not a good way to quantify how good the
generated samples are.

* Generating discrete samples.
 One-shot imitation learning.

e Connection to reinforcement learning.






